Category Archives: 智力测试

[转]面试智力题(下)

12. 两个机器人,初始时位于数轴上的不同位置。给这两个机器人输入一段相同的程序,使得这两个机器人保证可以相遇。程序只能包含“左移n个单位”、“右移n个单位”,条件判断语句If,循环语句while,以及两个返回Boolean值的函数“在自己的起点处”和“在对方的起点处”。你不能使用其它的变量和计数器。

13. 如果叫你从下面两种游戏中选择一种,你选择哪一种?为什么?
a. 写下一句话。如果这句话为真,你将获得10美元;如果这句话为假,你获得的金钱将少于10美元或多于10美元(但不能恰好为10美元)。
b. 写下一句话。不管这句话的真假,你都会得到多于10美元的钱。


14. 你在一幢100层大楼下,有21根电线线头标有数字1..21。这些电线一直延伸到大楼楼顶,楼顶的线头处标有字母A..U。你不知道下面的数字和上面的字母的对应关系。你有一个电池,一个灯泡,和许多很短的电线。如何只上下楼一次就能确定电线线头的对应关系?
15. 某种药方要求非常严格,你每天需要同时服用A、B两种药片各一颗,不能多也不能少。这种药非常贵,你不希望有任何一点的浪费。一天,你打开装药片A的药瓶,倒出一粒药片放在手心;然后打开另一个药瓶,但不小心倒出了两粒药片。现在,你手心上有一颗药片A,两颗药片B,并且你无法区别哪个是A,哪个是B。你如何才能严格遵循药方服用药片,并且不能有任何的浪费?
16. 你在一个飞船上,飞船上的计算机有n个处理器。突然,飞船受到外星激光武器的攻击,一些处理器被损坏了。你知道有超过一半的处理器仍然是好的。你可以向一个处理器询问另一个处理器是好的还是坏的。一个好的处理器总是说真话,一个坏的处理器总是说假话。用n-2次询问找出一个好的处理器。
17. 一个圆盘被涂上了黑白二色,两种颜色各占一个半圆。圆盘以一个未知的速度、按一个未知的方向旋转。你有一种特殊的相机可以让你即时观察到圆上的一个点的颜色。你需要多少个相机才能确定圆盘旋转的方向?
 

 

 

 

 

 

 

 

 

 

 

 

 

答案:

12.  两个机器人同时开始以单位速度右移,直到一个机器人走到另外一个机器人的起点处。然后,该机器人以双倍速度追赶对方。程序如下。

while(!at_other_robots_start) {
move_right 1
}
while(true) {
move_right 2
}
13. 选择第一种游戏,并写下“我既不会得到10美元,也不会得到10000000美元”。

14. 在下面把2,3连在一起,把4到6全连在一起,把7到10全连在一起,等等,这样你就把电线分成了6个“等价类”,大小分别为1, 2, 3, 4, 5, 6。然后到楼顶,测出哪根线和其它所有电线都不相连,哪些线和另外一根相连,哪些线和另外两根相连,等等,从而确定出字母A..U各属于哪个等价类。现在,把每个等价类中的第一个字母连在一起,形成一个大小为6的新等价类;再把后5个等价类中的第二个字母连在一起,形成一个大小为5的新等价类;以此类推。回到楼下,把新的等价类区别出来。这样,你就知道了每个数字对应了哪一个原等价类的第几个字母,从而解决问题。

15. 把手上的三片药各自切成两半,分成两堆摆放。再取出一粒药片A,也把它切成两半,然后在每一堆里加上半片的A。现在,每一堆药片恰好包含两个半片的A和两个半片的B。一天服用其中一堆即可。

16. 给处理器从1到n标号。用符号a→b表示向标号为a的处理器询问处理器b是不是好的。首先问1→2,如果1说不是,就把他们俩都去掉(去掉了一个好的和一个坏的,则剩下的处理器中好的仍然过半),然后从3→4开始继续发问。如果1说2是好的,就继续问2→3,3→4,……直到某一次j说j+1是坏的,把j和j+1去掉,然后问j-1 → j+2;或者从j+2 → j+3开始发问,如果前面已经没有j-1了(之前已经被去掉过了)。注意到你始终维护着这样一个“链”,前面的每一个处理器都说后面那个是好的。这条链里的所有处理器要么都是好的,要么都是坏的。当这条链越来越长,剩下的处理器越来越少时,总有一个时候这条链超过了剩下的处理器的一半,此时可以肯定这条链里的所有处理器都是好的。或者,越来越多的处理器都被去掉了,链的长度依旧为0,而最后只剩下一个或两个处理器没被问过,那他们一定就是好的了。另外注意到,第一个处理器的好坏从来没被问过,仔细想想你会发现最后一个处理器的好坏也不可能被问到(一旦链长超过剩余处理器的一半,或者最后没被去掉的就只剩这一个了时,你就不问了),因此询问次数不会超过n-2。

17. 你可以把两个相机放在圆盘上相近的两点,然后观察哪个点先变色。事实上,只需要一个相机就够了。控制相机绕圆盘中心顺时针移动,观察颜色多久变一次;然后让相机以相同的速度逆时针绕着圆盘中心移动,再次观察变色的频率。可以断定,变色频率较慢的那一次,相机的转动方向是和圆盘相同的。

[转]面试智力题(上)

1. 考虑一个双人游戏。游戏在一个圆桌上进行。每个游戏者都有足够多的硬币。他们需要在桌子上轮流放置硬币,每次必需且只能放置一枚硬币,要求硬币完全置于桌面内(不能有一部分悬在桌子外面),并且不能与原来放过的硬币重叠。谁没有地方放置新的硬币,谁就输了。游戏的先行者还是后行者有必胜策略?这种策略是什么?

2. 用线性时间和常数附加空间将一篇文章的单词(不是字符)倒序。

3. 用线性时间和常数附加空间将一个长度为n的字符串向左循环移动m位(例如,”abcdefg”移动3位就变成了”defgabc”)。

4. 一个矩形蛋糕,蛋糕内部有一块矩形的空洞。只用一刀,如何将蛋糕切成大小相等的两块?

5. 一块矩形的巧克力,初始时由N x M个小块组成。每一次你只能把一块巧克力掰成两个小矩形。最少需要几次才能把它们掰成N x M块1×1的小巧克力?

6. 如何快速找出一个32位整数的二进制表达里有多少个”1″?用关于”1″的个数的线性时间?

7. 一个大小为N的数组,所有数都是不超过N-1的正整数。用O(N)的时间找出重复的那个数(假设只有一个)。一个大小为N的数组,所有数都是不超过N+1的正整数。用O(N)的时间找出没有出现过的那个数(假设只有一个)。

8. 给出一行C语言表达式,判断给定的整数是否是一个2的幂。

9. 地球上有多少个点,使得从该点出发向南走一英里,向东走一英里,再向北走一英里之后恰好回到了起点?

10. A、B两人分别在两座岛上。B生病了,A有B所需要的药。C有一艘小船和一个可以上锁的箱子。C愿意在A和B之间运东西,但东西只能放在箱子里。只要箱子没被上锁,C都会偷走箱子里的东西,不管箱子里有什么。如果A和B各自有一把锁和只能开自己那把锁的钥匙,A应该如何把东西安全递交给B?

11. 一对夫妇邀请N-1对夫妇参加聚会(因此聚会上总共有2N人)。每个人都和所有自己不认识的人握了一次手。然后,男主人问其余所有人(共2N-1个人)各自都握了几次手,得到的答案全部都不一样。假设每个人都认识自己的配偶,那么女主人握了几次手?

 

 

 

 

 

 

 

 

 

 

 

答案:

  1. 先行者在桌子中心放置一枚硬币,以后的硬币总是放在与后行者刚才放的地方相对称的位置。这样,只要后行者能放,先行者一定也有地方放。先行者必胜。
  2. 先将整篇文章的所有字符逆序(从两头起不断交换位置相对称的字符);然后用同样的办法将每个单词内部的字符逆序。这样,整篇文章的单词顺序颠倒了,但单词本身又被转回来了。
  3. 把字符串切成长为m和n-m的两半。将这两个部分分别逆序,再对整个字符串逆序。
  4. 注意到平分矩形面积的线都经过矩形的中心。过大矩形和空心矩形各自的中心画一条线,这条线显然把两个矩形都分成了一半,它们的差当然也是相等的。
  5. N x M – 1次显然足够了。这个数目也是必需的,因为每掰一次后当前巧克力的块数只能增加一,把巧克力分成N x M块当然需要至少掰N x M – 1次。
  6. 答案1(关于数字位数线性):for(n=0; b; b >>= 1) if (b & 1) n++;
    答案2(关于”1″的个数线性):for(n=0; b; n++) b &= b-1;
  7. 计算数组中的所有数的和,再计算出从1到N-1的所有数的和,两者之差即为重复的那个数。计算数组中的所有数的和,再计算出从1到N+1的所有数的和,两者之差即为缺少的那个数。
  8. (b & (b-1)) == 0
  9. “北极点”是一个传统的答案,其实这个问题还有其它的答案。事实上,满足要求的点有无穷多个。所有距离南极点1 + 1/(2π)英里的地方都是满足要求的,向南走一英里后到达距离南极点1/(2π)的地方,向东走一英里后正好绕行纬度圈一周,再向北走原路返回到起点。事实上,这仍然不是满足要求的全部点。距离南极点1 + 1/(2kπ)的地方都是可以的,其中k可以是任意一个正整数。
  10. A把药放进箱子,用自己的锁把箱子锁上。B拿到箱子后,再在箱子上加一把自己的锁。箱子运回A后,A取下自己的锁。箱子再运到B手中时,B取下自己的锁,获得药物。
  11. 握手次数只可能是从0到2N-2这2N-1个数。除去男主人外,一共有2N-1个人,因此每个数恰好出现了一次。其中有一个人(0)没有握手,有一个人(2N-2)和所有其它的夫妇都握了手。这两个人肯定是一对夫妻,否则后者将和前者握手(从而前者的握手次数不再是0)。除去这对夫妻外,有一个人(1)只与(2N-2)握过手,有一个人(2N-3)和除了(0)以外的其它夫妇都握了手。这两个人肯定是一对夫妻,否则后者将和前者握手(从而前者的握手次数不再是1)。以此类推,直到握过N-2次手的人和握过N次手的人配成一对。此时,除了男主人及其配偶以外,其余所有人都已经配对。根据排除法,最后剩下来的那个握手次数为N-1的人就是女主人了。

[转]10道变态的逻辑题

1. 给一个瞎子52张扑克牌,并告诉他里面恰好有10张牌是正面朝上的。要求这个瞎子把牌分成两堆,使得每堆牌里正面朝上的牌的张数一样多。瞎子应该怎么做?

2. 如何用一枚硬币等概率地产生一个1到3之间的随机整数?如果这枚硬币是不公正的呢?

3. 30枚面值不全相同的硬币摆成一排,甲、乙两个人轮流选择这排硬币的其中一端,并取走最外边的那枚硬币。如果你先取硬币,能保证得到的钱不会比对手少吗?

4. 一个环形轨道上有n个加油站,所有加油站的油量总和正好够车跑一圈。证明,总能找到其中一个加油站,使得初始时油箱为空的汽车从这里出发,能够顺利环行一圈回到起点。

5. 初始时,两个口袋里各有一个球。把后面的n-2个球依次放入口袋,放进哪个口袋其概率与各口袋已有的球数成正比。这样下来,球数较少的那个口袋平均期望有多少个球?

6. 考虑一个n*n的棋盘,把有公共边的两个格子叫做相邻的格子。初始时,有些格子里有病毒。每一秒钟后,只要一个格子至少有两个相邻格子染上了病毒,那么他自己也会被感染。为了让所有的格子都被感染,初始时最少需要有几个带病毒的格子?给出一种方案并证明最优性。

7. 在一个m*n的棋盘上,有k个格子里放有棋子。是否总能对所有棋子进行红蓝二染色,使得每行每列的红色棋子和蓝色棋子最多差一个?

8. 任意给一个8*8的01矩阵,你每次只能选一个3*3或者4*4的子矩阵并把里面的元素全部取反。是否总有办法把矩阵里的所有数全部变为1?

9. 五个洞排成一排,其中一个洞里藏有一只狐狸。每个夜晚,狐狸都会跳到一个相邻的洞里;每个白天,你都只允许检查其中一个洞。怎样才能保证狐狸最终会被抓住?

10. 一个经典老题是说,把一个3*3*3的立方体切成27个单位立方体,若每一刀切完后都允许重新摆放各个小块的位置,最少可以用几刀?答案仍然是6刀,因为正中间那个单位立方体的6个面都是后来才切出来的,因此怎么也需要6刀。考虑这个问题:若把一个n*n*n的立方体切成一个个单位立方体,最少需要几刀?

 

 

 

 

 

 

 

 

 

 
答案:

  1. 把扑克牌分成两堆,一堆10张,一堆42张。然后,把小的那一堆里的所有牌全部翻过来。
  2. 如果是公正的硬币,则投掷两次,“正反”为1,“反正”为2,“正正”为3,“反反”重来。
    如果是不公正的硬币,注意到出现“正反”和“反正”的概率一样,因此令“正反反正”、“反正正反”、“正反正反”分别为1、2、3,其余情况重来。另一种更妙的办法是,投掷三次硬币,“正反反”为1,“反正反”为2,“反反正”为3,其余情况重来。
  3. 先取者可以让自己总是取奇数位置上的硬币或者总是取偶数位置上的硬币。数一数是奇数位置上的面值总和多还是偶数位置上的面值总和多,然后总是取这些位置上的硬币就可以了。
  4. 总存在一个加油站,仅用它的油就足够跑到下一个加油站(否则所有加油站的油量加起来将不够全程)。把下一个加油站的所有油都提前搬到这个加油站来,并把油已被搬走的加油站无视掉。在剩下的加油站中继续寻找油量足以到达下个加油站的地方,不断合并加油站,直到只剩一个加油站为止。显然从这里出发就能顺利跑完全程。
    另一种证明方法:先让汽车油箱里装好足够多的油,随便从哪个加油站出发试跑一圈。车每到一个加油站时,记录此时油箱里剩下的油量,然后把那个加油站的油全部装上。试跑完一圈后,检查刚才路上到哪个加油站时剩的油量最少,那么空着油箱从那里出发显然一定能跑完全程。
  5. 先考虑一个看似无关的问题——怎样产生一个1到n的随机排列。首先,在纸上写下数字1;然后,把2写在1的左边或者右边;然后,把3写在最左边,最右边,或者插进1和2之间……总之,把数字i等概率地放进由前面i-1个数产生的(包括最左端和最右端在内的)共i个空位中的一个。这样生成的显然是一个完全随机的排列。
    我们换一个角度来看题目描述的过程:假想用一根绳子把两个球拴在一起,把这根绳子标号为1。接下来,把其中一个小球分裂成两个小球,这两个小球用标号为2的绳子相连。总之,把“放进第i个球”的操作想象成把其中一个球分裂成两个用标有i-1的绳子相连的小球。联想我们前面的讨论,这些绳子的标号事实上是一个随机的全排列,也就是说最开始绳子1的位置最后等可能地出现在每个地方。也就是说,它两边的小球个数(1,n-1)、(2,n-2)、(3,n-3)、……、(n-1,1)这n-1种情况等可能地发生。因此,小袋子里的球数大约为n/4个。准确地说,当n为奇数时,小袋子里的球数为(n+1)/4;当n为偶数时,小袋子里的球数为n^2/(4n-4)。
  6. 至少要n个,比如一条对角线上的n个格子。n个格子也是必需的。当一个新的格子被感染后,全体被感染的格子所组成的图形的周长将减少0个、2个或4个单位(具体减少了多少要看它周围被感染的格子有多少个)。又因为当所有格子都被感染后,图形的周长为4n,因此初始时至少要有n个被感染的格子。
  7. 可以。建一个二分图G(X,Y),其中X有m个顶点代表了棋盘的m个行,Y有n个顶点代表了棋盘的n个列。第i行第j列有棋子就在X(i)和Y(j)之间连一条边。先找出图G里的所有环(由于是二分图,环的长度一定是偶数),把环里的边红蓝交替染色。剩下的没染色的图一定是一些树。对每棵树递归地进行操作:去掉一个叶子节点和对应边,把剩下的树进行合法的红蓝二染色,再把刚才去掉的顶点和边加回去,给这个边适当的颜色以满足要求。
  8. 不能。大矩阵中有36个3*3的小矩阵和25个4*4的小矩阵,因此总共有61种可能的操作。显然,给定一个操作序列,这些操作的先后顺序是无关紧要的;另外,在一个操作序列中使用两种或两种以上相同的操作也是无用的。因此,实质不同的操作序列只有2^61种。但8*8的01矩阵一共有2^64种,因此不是每种情况都有办法达到目的。
  9. 答案:按照2, 3, 4, 2, 3, 4的顺序检查狐狸洞可以保证抓住狐狸。为了说明这个方案是可行的,用集合F表示狐狸可能出现的位置,初始时F = {1, 2, 3, 4, 5}。如果它不在2号洞,则第二天狐狸已经跑到了F = {2, 3, 4, 5}。如果此时它不在3号洞,则第三天狐狸一定跑到了F = {1, 3, 4, 5}。如果此时它不在4号洞,则再过一晚后F = {2, 4}。如果此时它不在2号洞,则再过一天F = {3, 5}。如果此时它不在3号洞,再过一天它就一定跑到4号洞了。
    方案不是唯一的,下面这些方案都是可行的:
    2, 3, 4, 4, 3, 2
    4, 3, 2, 2, 3, 4
    4, 3, 2, 4, 3, 2
  10. 事实上,从一个更强的命题出发反而能使问题变得更简单。对于一个a*b*c的长方体,我们需要f(a)+f(b)+f(c)刀,其中f(x)=⌈log(x)/log(2)⌉。只需要注意到,在整个过程中的任何一步,切完当前最大的块所需要的刀数也就等于整个过程还需要的刀数,因为其它小块需要的刀数都不会超过最大块所需刀数,它们都可以与最大块一道并行处理。这表明,我们的最优决策即是让当前的最大块尽可能的小,也就是说要把当前的最大块尽可能相等地切成两半。利用数学归纳法,我们可以很快得到本段开头的结论。

[转]难死人不偿命!苹果8大笔试题及答案

苹果公司在招聘员工时,会向求职者问一些“可汗学院”(Khan Academy)提出的考验智商的谜题。

你可能没听说过“可汗学院”,但“可汗学院”的谜题被苹果采用一定是有其道理的。可汗学院由孟加拉裔美国人萨尔曼·可汗(Salman Kahan)创立,是一家由谷歌和比尔&梅琳达·盖茨基金会背后支持的教育性非营利组织,主旨在于利用网络影片进行免费授课,目前已经有关于数学、历史、金融、物理、化学、生物、天文学等科目的内容。

苹果在面试过程中随时都有可能向求职者抛出这些考验智商与逻辑的问题,因此如果你向往进入苹果工作,这些艰涩的问题在面试前必须谨慎对待仔细研究,因为苹果的原则是——不能出错,哪怕你已经级别很高,是冲着苹果的高级软件工程师职位而来也不例外。

幸运的是,这些问题虽然刁钻,但却都有唯一的答案,所以你只要有备而来,还是可以应对自如的,下面是 8 个苹果面试过程中求职者可能遇到的问题,以及已经被各路聪明的求职者破解的答案。

问题一:

“你面前有两扇门,其中一扇门内藏着宝藏,但如果你不小心闯入另一扇门,只能痛苦地慢慢死掉……”

这一听就是那种经典的最令人头痛的一类问题,但其实与其他问题相比,这只是个热身。在这两扇门后面,有两个人,这两个人都知道哪扇门后有宝藏,哪扇门擅闯者死,而这两个人呢,一个人只说真话,一个人只说假话。

谁说真话谁说假话?那就要看你有没有智慧自己找出来了,游戏规则是,你只能问这两个人每人一个问题。

那么,你问什么问题?问哪个人?根据他们的回答,你又该怎么做?

求职者的最佳答案:

随便问其中一个人:“如果我问另一个人,他会跟我说哪扇门后是宝藏?

如果你问的恰好是讲真话的那个人,那他指给你的答案就是那扇通向死亡的门,因为他会诚实地告诉你那个说谎的人会怎么说。

如果你问的是那个只说谎话的,你得到的也是错误的答案,因为另一个人是讲真话的,说谎话的人会告诉你与讲真话的人相反的答案。

所以你只要随便问一个人上述问题,然后选择与他们说的相反的门就行了。

问题二:

“你前面站了 5 个人,他们中间只有一个人讲真话……”

这个问题比上个问题难就难在,你只知道他们五个中有一个只讲真话,但其余四个,他们有时候讲真话,有时候讲假话,只有一点可以确定,这四个人将真话和假话有个规律:如果这次讲了真话,下次就会讲假话,如果这次讲假话,下次就讲真话。你的任务是,把五个人中那个只讲真话的人找出来。

你可以问两个问题,两个问题可以向同一个人发问,也可以分别问两个人。

你该问什么问题?

小提示:你可以这样安排两个问题承担的任务:首先你可以先问一个问题,不管得到的答案是什么,你都能从中知道下一个问题你将得到的答案是真是假。

求职者的最佳答案:

随便找一个人,首先问:“你是那个只讲真话的吗?”如果答案是肯定的,你再问这个人:“谁是只讲真话的?”;如果第一个问题你得到的答案是否定的,你就再问对方“谁不是只讲真话的?”

正如这个问题给出的提示,第一个问题的价值在于,如果你得到的答案是“我是”,那么你问的人要么是那个只讲真话的,要么是那个这一轮讲假话的“半真话半假话”者,不管是谁,他下一轮一定会说真话。所以你可以继续问这个人:“谁是只讲真话的?”对方的答案就是正确答案。

如果对第一个问题你得到的答案是“我不是”,那么回答者不可能是只讲真话的那个人,只能是一个此轮讲真话的“半真话半假话”者。此人下一轮将会说假话,所以你应该问他:“谁不是只讲真话的?”同样他告诉你的,只能是那个只讲真话的。

问题三:

“外星人打算将地球用来种蘑菇,并且已经抓了十个人类……”

外星人用这十个人代表地球 60 亿人口,将通过外星人的方式来测试这十个人,决定地球是不是有资格加入跨星际委员会,如果没有,就把地球变成一个蘑菇农场。

明天,这十个人将被关在一间漆黑的屋子里前后排成一队,外星人将给每个人戴一顶帽子,帽子为紫色或者绿色,然后外星人会将灯打开,这十个人每个人都无法看见自己头上的帽子是什么颜色,但可以看见排在你前面的每个人头上帽子的颜色。

帽子的颜色是随机的,可能全是紫的,也可能全是绿的,或者是任意的组合。

外星人会从后往前问每一个人:“你头上的帽子是什么颜色?”如果这个人答对了,这个人就安然无事,他所代表的地球上 6 亿人口也将获救。否则,这个人将被爆头,外星人将把他所代表的 6 亿人口变成蘑菇的肥料。每个人的答案屋子里所有人都可以听到。

现在,人类的命运在你手上,你可以设计一个方案,使这十个人提前制定一个计划,这个计划必须拯救尽可能多的人。

提示:有个方案可以让你拯救其中至少九个人。

求职者的最佳答案:

第十个人计算排在前面的所有人的绿帽子是奇数还是偶数并向前面的人发出一个信号,这样排在前面人就可以再通过排在更前面的所有人的绿帽子的奇偶数是否变化来判断自己帽子的颜色,因为如果绿帽子奇偶发生变化,那自己就是那个导致变化的“绿帽子”,如果没变化,自己就是“紫帽子”。

因为所有的人除了回答外星人的问题不能说话,所以第十个人的“信号”只能包含在自己的答案里,比如如果排在前面的九个人有奇数顶绿帽子,这个人类就告诉外星人自己的帽子是“绿色”,如果是偶数,就猜自己的帽子是“紫色”。这样等于给他前面的人一个暗号,排在他前面的这个人,可以通过计算自己前面的所有人的绿帽子的奇偶变化来判断自己的帽子是绿还是紫。

排在最后的那个人为了大众利益没有选择,根据前面的人的帽子情况告诉外星人自己是“绿帽子”还是“紫帽子”,他的答案有1/2的几率正确,但他前面的人一定都能答对。

还没懂?比如第十个人看到前面有奇数个绿帽子,他就告诉外星人自己的是绿色,这是他前面的人就知道他的意思是前面九个人中有奇数个绿帽子,这是第九个人再数前面八个人的,如果前面八个人中也有奇数个,那自己就是紫色帽子。第九个人告诉外星人自己是紫色帽子,第八个人就知道绿帽子没有减少还是奇数个,再数数前面七个人绿帽子数的奇偶,就可以判断自己帽子的颜色;反之,如果第九个人告诉外星人自己是绿色帽子,那第八个人就应该知道绿色帽子减少了一个由奇数变成了偶数,再看看前面所有的绿帽子情况作出判断。这样一个接一个,只要每个人都认真听后面的人的答案并在心里计算所剩绿帽子的奇偶变化,前面九个人都能获救。

当然,你也可以计算紫色帽子的奇偶。

问题四:

“100个完美的逻辑学家坐在一个房间里……”

这是一个电视真人秀节目,节目里 100 个拥有完美无瑕逻辑思维能力的人围成一圈坐在一个房间里。在进入房间前,这 100 个人被告知,100个人中至少有一个人的额头是蓝色的。你可以看见别人额头的颜色,但无法看到自己的,你需要对自己额头是不是蓝色进行猜测,在房间的灯被关掉时,如果你推测出你的额头是蓝色的,你需要站起来离开房间。

然后房间的灯被再次打开,那些认为自己额头是蓝色的人已经不在屋内。接下来灯会再次被关掉,剩下的人中推测自己额头是蓝色的离开房间,如此重复。

问题来了,假设这 100 个人的额头都是蓝色的,将会发生什么情况?注意,这 100 个人都有完美无瑕的逻辑推理能力,他们会根据其他人的额头颜色对自己进行合理的推理和猜测。

提示:想想看,如果 100 个人不全是蓝色额头,又会发生什么情况?

求职者的最佳答案:

将会出现的情况是:灯关了又开,开了又关,重复到第一百次时,所有人都同时离开。

这是为什么呢?想想看,每个人都看见其他 99 个人额头是蓝色的,灯关掉后再打开,发现这 99 个蓝色额头的同伴都没有离开,然后灯再次关掉后打开,如此重复 100 遍后,所有人同时离开了房间。

这么理解吧,假设只有一个人的额头是蓝色的,由于这 100 个人事先被告知至少有一个人额头是蓝色,所以这个人如果看到其他 99 个人额头都不是蓝色,立马就知道自己是蓝色,所以灯一关掉,这个人就会离开房间。

如果有两个人额头是蓝色呢?

其中一个蓝色额头的人会想:我的额头可能是蓝色也可能不是蓝色,现在其他 99 个人中有一个蓝色额头的人,如果我不是蓝色,那么就只有这一个人是,那么他看到我们都不是蓝色额头就能推断出他是,那么灯一关他就会离开,我先等一下,灯再打开如果他已经走了,那就证明我的额头不是蓝色的。

反之,如果我的额头是蓝色的,那个蓝色额头的人的想法会和我刚才的想法一样先等一等,第一次关灯他不会离开,这样如果灯开了那个蓝色额头的人还在,就证明我的额头也是蓝色的。这样第二次关灯我们俩会一起离开。

以此类推,如果有三个人额头是蓝色,你看到另外两个人额头是蓝色,应该推算出如果自己的额头不是蓝色的话,那么灯第二次关的时候他们俩会同时离开,如果他们俩没有同时离开,那就证明我的额头是蓝色的,我应该在第三次关灯的时候离开。结果是,三个蓝色额头的人在第三次关灯的时候同时离开。

把上述逻辑重复一百遍,你就得到了最上面的正确答案。

问题五:

“你有一个横 6 竖 6 的方格……”

你现在在左上第一个格子里,你的任务是移动到最右下脚的格子里,你每次只能向右或者向下移动,不能斜向移动,也不能后退。

你能找出几种方法移动到最右下脚的格子?

求职者的最佳答案:

252种。

从对称的角度思考这个问题。

随便挑选一个格子,假设你从出发点有n种方法从到达与所选格子上边相邻的格子,m种方法到达与它左边相邻的格子。

想想看,从出发点到达一个格子的方法与到达它左边和上边的格子的方法有什么关系?说对了,由于你只能向右和向下移动,到达一个格子,不是从它左边来,就是从它上边来。所以你从出发点到达一个格子的方法等于到达它上边格子的方法好到达它左边格子的方法的和相同,也就是n+m。

这样,参照上图,你就可以算出从出发点到达每一个格子的方法了。

问题六:

“逻辑学家们围成一圈坐着,他们的额头上面画有数字……”

又来一个逻辑学家围成一圈的问题,这次是这样的,三个拥有完美逻辑推理能力的人围成一圈坐在一个房间里,每个人的额头上都画着一个大于 0 的数字,三个人的数字各不相同,每个人都看得见其他两个人的数字,看不见自己的。

这三个数字的情况是,其中一个数字是其他两个数字的和,已知的情况还有,其中一个逻辑学家的数字是 20,一个是 30。

游戏组织者从这三个逻辑学家后面走过,并问三个人各自额头上的数字是什么。但第一轮每个逻辑学家都回答他们无法推测自己的数字是什么。游戏组织者只好进行第二轮的发问,这是为什么?你能据此猜出三个逻辑学家的数字吗?

求职者的最佳答案:

结果由第三个逻辑学家的答案而定。他们三个的数字分别是 20,30和 50。

假设第二个和第三个逻辑学家额头上的数字是 20 和 30,这时候如果第一个逻辑学家的数字是 10,那么第二个逻辑学家看到其他两个人一个是 10,一个是 30,会想:“我要么是 20,要么是 40。”

第三个逻辑学家看到其他两个人一个是 10,一个是 20,会想:“我要么是 30,要么是 10,但我不会是 10,因为每个数字都不一样,所以我应该是 30。”

这样第三个逻辑学家就会猜出自己的数字是 30 了,但他没有,第一轮谁也没有准确推测出自己的数字,这说明我们的前提不正确,第一个逻辑学家的数字不是 10,那么他只能是 50。

问题七:

“你面前有一百个灯泡,排成一排……”

一百个灯泡排成一排,第一轮你把他们全都打开亮着,然后第二轮,你每隔一个灯泡关掉一个,这样所有排在偶数的灯泡都被关掉了。

然后第三轮,你每隔两个灯泡,将开着的灯泡关掉,关掉的灯泡打开(也就是说将所有排在 3 的倍数的灯泡的开关状态改变)。

以此类推,你将所有排在 4 的倍数的灯泡的开关状态改变,然后将排在 5 的倍数的灯泡开关状态改变……

第 100 轮的时候,还有几盏灯泡亮着?

提示:如果你是第n轮(n大于 1 小于 100),排在n的倍数位置的灯泡的开关状态就发生转变。

反过来,比如第 8 个灯泡,当你在 8 的因子轮(即第1,2,4和 8 轮)的时候,它就会改变开关状态。所以对于第m个灯泡,如果m有奇数个因子,你的开关状态就发生奇数次变化。

求职者的最佳答案:

10盏灯泡亮着,这 10 盏灯泡排位数都是平方数。

根据提示已经可以看出,这个问题的实质就是找出有多少个灯泡的排位数拥有奇数个因子。每拥有一个因子,到这个因子数的那一轮时,这个灯泡就会被转换开关状态。

比如第 1 轮,因为所有 100 个数字都有因数1,所以全部被打开;第 2 轮,只有那些拥有 2 这个因子、能被 2 整除的数字的灯泡转换状态被关掉;第 3 轮,只有那些拥有 3 这个因子、能被 3 整除的数字的灯泡被转换状态。以此类推,如果灯泡排位数拥有奇数个因子,意味着它被打开和关上奇数次,那它就最终还是被打开的状态,如果灯泡排位数拥有偶数个因子,那它最终就是被关上的状态。

比如第 1 个灯泡有奇数个因子,第 2 个有偶数个(1,2),第 3 个有偶数个(1,3)第 4 个有奇数个(1,2,4),所以第 4 个灯泡最后还是亮着的。

最终计算得出,所有排位数为平方数的灯泡最终还是亮着的,因为这些数都拥有奇数个因子,1,4,9,16……

在 100 以内,共有 10 个平方数,分别是1,4,9,16,25,36,49,64,81,100。这 10 个排位数的灯泡,最终都还是亮着。

问题八:

“你有一个立方体,立方体的边长是3……”

这个问题比前面那个从左上格子走到右下格子的问题难,因为那毕竟是个平面问题。如图所示,这次的任务是从立方体的背面左上的小立方体走到完全相对的正面右下小立方体。

你可以往上移,也可以往下移,还可以往前移。You can move toward the front, you can move down, or you can move upward。

问题还是,你共有几种走法?

求职者的最佳答案:

90种,思路是将这个立方体分成“三层”。

上面平面图的那道题的思路就是个最好的提示。你可以将这个立方体分成“三层”,粉红色代表最上面那层,紫色代表中间那层,橘红色代表下面那层。

现在,我们把问题变成了:从左边、右边和上边到达目标小立方体的走法共有多少(如图所示,即到达紫色中间层最右下脚方块以及橘红色最右下脚左边以及上边相邻方块的方法)?假设从起点小立方体到达终点小立方体左边相邻小立方体共有m种方法,到达右边相邻小立方体共有n种方法,到达上边相邻小立方体有r种方法,那我们需要求出来的,就是n+m+r。

按照前面那道平面题的思路和方法,你就可以一点一点计算出来我们的正确答案。

多年前花了一堂课才做出来的智力题

一位教授把16张扑克牌放在桌上,如下:
黑桃: A 7 Q
红心: 3 4 7 9 J Q
梅花: 2 3 5 Q K
方块: A 5
教授从中选出一张。把这张牌的数告诉了他的学生“甲”,
把花色告诉了“乙”。然后教授问“甲”说:“你知道是那一张牌吗?”
甲:“我不能确定是那张牌。”
乙:“你知道你会这样说。”
甲:“现在我知道了。”
乙:“现在我也知道了。”
教授高兴的点点头。甲、乙二人都是有很强逻辑推理能力的,并且都说了实话。
根据以上信息,通过你的推理告诉我这张是什么牌?